

		 						 		 				-
														_

1.)	Find	the	slopes	Using	the	lin	tin	def	init	ion	5	2 511	xpee	s d	eriv	sati:	ves	•
	<u>a</u> `\	3																
	v .)	1 ^																
_																		
 _					_													
																		-
		0.2.	11															
 	10.)	2X-4	98+1															
 _																		
_																		
	c.)	$\frac{1}{\chi^2}$																-
_																		
									-									
									1							1		

3. Differentiate the following functions: a.) $y=31n^{2}(3x^{2}+4)$ $\cos(\sin(\cos(3x)))$ b.) c.) tan (IX sin(4x))

4.) Find the equation of the tangent line a.) $y = ln(2x^2 - 7x + 4)$ at x = 3(b) $\chi^{2} + \chi + \chi^{2} = 23$ at $\chi = 4$

if $f(x) = e^{x}g(x) + \sin(g(x))$ where g(x) = 2 g'(x) = 5and g''(x) = 7. Find f'(x) and f''(x). 5.)

(6.) $f(x) + e^{x} \cos(f(x)) = 3x^{2}$. find g'(0)

8.) Use logarithmic differentiation on the following a.) $\gamma = \frac{x^5}{(1-10x)(1x^2+2)}$ b.) $f(x) = x^{2x}$ C.) $y = (1-3x)^{\cos(x)}$

(a	\mathcal{A}		A i.r	in he	ina		nod	into	0.00	hori				+ ~ .	oto	d E		min	Do	torm	ino	the	roto	at .	
-	-1	\cdot	n,	All	IS DE		pum	pea	inio bo b	a sp	nen	inor			u a i	ate	CI D	cm3	rof	the		iine on i	ine i		ลเ	-
		•		VVIII	ch u	le la	uius	011	ne b	anoc	11 15	IIICI	eas	ing v	viiei	i uie	uiai	nete		uiei	Janc		15 20	, cm.		
-	_																									-
-	_				_																					-
-	_				_																					-
1	1		T٧	vo p	eop	le ar	e 50	feet	apa	art. C)ne (of th	em	start	s wa	alkin	g no	rth a	tar	ate s	so th	nat tl	he a	ngle		
Ų	ມ		sh	Iwor	n in t	the c	liagr	am t	pelo	v is	char	nging	g at	a co	nsta	int ra	ate o	f 0.0	1 ra	d/mi	n. A	t wh	at ra	ate is		-
			di	star	nce b	betw	een t	the t	wo p	peop	le cł	nanc	ging	whe	n θ:	-0.5	rad	lians	?							
-	_																									-
-	-																									-
-	-																									-
-														· .												
C	.)		\ sp	ot liq	ght is	s on	the g	grou	nd 2	0 ft a	away	/ fro	m a	wall	and	1 a 6	ft ta	ll pe	rsor	I IS V	valki	ng t	owa	rds		
		t i	ne v	vall	at a	rate	012	.5 TV:	sec.	HOV	v tas	t IS	the i	neigi		the	snac	JOW in h	cnai	nging	g wr	ien	the p	berso	n	
+	-	- Ii	501	eet	ITOIT	i ine	waii	15	ine :	snac		ncre	asii	ig o	ue	liea	sing		eign	lall	nis i	ime	ſ			
1																										
_	_																									
1	1				-																					
_	_																									-
2	\rightarrow	、 、																				.3				-
0	٨.)	A ta	ink (of wa	ater	in the	e sha	ape	of a	cone	e is	leak	ing v	vate	rat	a co	nsta	nt ra	ite o	† 2 †	t°/h	our t	he		
			bas	e ra	idius	oft	he ta	ink is	\$5†	t and	the	hei	ght	of th	e tai	nk is	141	t. At	wha	it rat	e is	the	dept	th of		
-	-		tne	wat	er in	tne	tank	cna	ingir	ig w	nen	ine	aept	n of	ine	wate	er is	οπ?								-
-	-			-	-	-		-	-				-		-			-								-
	T																									
-	+																									
						1							1	1	1			1					1			